Type Theory exploration

 Type Theory

My understanding of Type theory.

Defining natural numbers:

zero:Nat

succ(n:Nat):Nat

So for example defining the number 2:

succ(succ(zero)):Nat

same as???

isNat(zero)

ForAll(n) :  isNat(n)=>isNat(succ(n))

We can define operations like plus and times and equals

//define proofs that  n==n

equals(zero,zero):Equals<zero,zero>

equals(succ(n:Nat),succ(n:Nat)):Equals<succ(n:Nat),succ(n:Nat)>


Proofs and Dependent types

Define a dependent type Even<n:Nat> which is a proof that n is even. 

{a:Nat, p:Equals<times(2,a),n>}:Even<n:Nat>

So that for example the following is a proof that 6 is even:

{3, equals(times(2,3),6)}:Even<6>

which becomes {3:Nat,equals(6,6):Equals<6,6>} :Even<6>


{a:Nat , p:Equals<times(2,a),n>}:Even<n:Nat>

isEven(n) = n =>    (a => (isNat(a) & equals(times(2,a),n)))

isEven(6) (3) 


In C syntax

typedef Even<Nat n> { Nat a, Equals<times(2,a),n> p };


Why not (?):

{a:Nat, p:IsTrue<equals(times(2,a),n)>}:Even<n:Nat>

{3,proof}:Even<6>


isEven( isNat(a) , equals(times(2,a),n)  , n)


larger(0,1):LargerThan<0,1>

larger(n,succ(n)):LargerThan<n,succ(n)>

larger(succ(n),succ(n)):LargerThan<succ(n),succ(n)>


{a:Nat, b:Nat, p1:LargerThan<1,a>,p2:LargerThan<1,b>, p3:Equals<times(a,b),n>}:  Composite<n:Nat>




Proof:

{2,3,larger(1,2),larger(1,3),equals(times(2,3),6)}:Composite<6>

isComposite = n->(a->b->  a & b & isLarger(1,a) & isLarger(1,b) & a*b=n)


f(x:Nat, p1:isComposite<n> ):G


(isNat(x) && isComposite(x)(a)(b) ==> isG(x))








proof:IsTrue<true>


{a:Nat, b:Nat, p1:IsTrue<larger(1,a)>,p2:IsTrue<larger(1,b)>, p3:IsTrue<equals(times(a,b),n)>}:  Composite<n:Nat>


Proof 1+1=2


sum(a:Nat,b:Nat):Sum<a,b>

zero_plus(n:Nat):Equals<Sum<zero,n>,n>

:Equals<x:Sum<a,b>,c:Nat>

Equals



isNat(a) & isNat(b) & larger(1,a) & larger(1,b) & equals(a*b,n)  =>  isComposite(c)


{a:Nat-> b:Nat -> c: Nat -> n:Nat -> a^n+b^n=c^n }:FermatLastTheorem


FermatLastTheorem = (a,b,c,n)=>(a^n+b^n=c^n)


Comments

Popular posts from this blog

Vortex Solution to Navier Stokes Equations

Solving two polynomials in two variables

Tarski-Seidenberg theorem