Posts

Showing posts from 2021

Generalised Complex Contour Integral

We shall define the  Generalised Complex Contour Integral as: \[  \oint_X \Delta[\phi]D\phi \equiv i \int\int \delta[X]\left( \overline{\Delta}[\overline{\phi}]\det\left[\frac{\delta X}{\delta \phi}\right] + \Delta[\phi] \det\left[\frac{\delta X}{\delta \overline{\phi}}\right] \right) D\phi D\overline{\phi} \] The function \[ \Delta[\phi] \]  is for \[ S_0 \] : \[ \Delta[\phi]  = \frac{1}{2\pi i (\phi_1 - \phi_2)}\] For \[S_n\] where n>0 \[ \Delta[\phi]  = \frac{1}{\int \varepsilon_{abc..}\phi^a(x) \partial_1 \phi^b(x) \partial_2 \phi^c(x)...     dx^n}\]  

Type Theory exploration

 Type Theory My understanding of Type theory. Defining natural numbers: zero: Nat succ(n: Nat ): Nat So for example defining the number 2: succ(succ(zero)): Nat same as??? isNat(zero) ForAll(n) :  isNat(n)=>isNat(succ(n)) We can define operations like plus and times and equals //define proofs that  n==n equals(zero,zero): Equals< zero,zero > equals(succ(n: Nat ),succ(n: Nat )): Equals< succ ( n :Nat ) , succ ( n :Nat ) > Proofs and Dependent types Define a dependent type Even <n: Nat > which is a proof that n is even.  {a: Nat, p: Equals <times(2,a),n>}: Even <n: Nat > So that for example the following is a proof that 6 is even: {3, equals(times(2,3),6)}: Even <6> which becomes {3: Nat ,equals(6,6): Equals <6,6>} : Even <6> {a: Nat ,  p: Equals <times(2,a),n>}: Even <n: Nat > isEven(n) = n =>    (a => (isNat(a) & equals(times(2,a),n))) isEven(6) (3)  In C syntax typedef Eve...