Sphere Packing
Sphere Packing
The sphere packing problem or kissing number problem can be stated as a set of quadratic inequalities:{Ainmxnxm + Ci ≥ 0}
Can we find a general algorithm to solve these equations? (Don't see why not!) (Actually need for pair of equations in N variables.)
One Equation - One variable ✓
(1) Ax2+C ≥ 0
has no solution if:
Two Equation - One variable ✓
(1) Ax2+c ≥ 0
(2) Dx2+f ≥ 0
has no solution if: A<0 & c>0 & D>0 & f<0 & (Dc-Af)>0 or vice versa
N Equations - One variable (SOLVED!) ✓
One Equation - M variables ✓
(1) xTAx+c ≥ 0
Solution if:
(1) xTAx+c ≥ 0
(2) xTDx+f ≥ 0
Solution if:
One condition is (from the resultant):
Two Equations - Three variables (✓?)
(1) xTAx+c ≥ 0
(2) xTDx+f ≥ 0
Two Equations - M variables (✓?)
(1) xTAx+c ≥ 0
(2) xTDx+f ≥ 0
Condition for overlapping det(cD-fA) > 0
Second equation one inside the other? Use area:
det(D/f) - det(A/c) > 0
-----------------------
Three Equations - 2 variables
(1) xTAx+c ≥ 0 . .... xTA'x+1 ≥ 0 , A'=A/c
(2) xTDx+f ≥ 0
(3) xTGx+i ≥ 0
???(εADG)+...????...
c4((εε(DG))(εε(DG))-(εεDD)(εεGG))2 + ...
+c2f2(...εε(DG)εε(DA)εε(AG)εε(GG)??...))))
+f4((εε(AG))(εε(AG))-(εεAA)(εεGG))2
+i4((εε(AD))(εε(AD))-(εεAA)(εεDD))2 > 0
(εεDG) = (det(D+G)-det(D)-det(G))/2
(εε(DG))(εε(DG))-(εεDD)(εεGG) = (2D+2G-V)(2D+2G-V)-4DG
= (det(D) + det(G) - det(D+G))^2 -4det(D)det(G)
= ((det(D)-det(G))2 - 2(det(D)+det(G))det(D+G) + det(D+G)2)2 + O(A)
... + det(D+A+G)2??? + ...
1 equation: det(A) power = 2
2 equations: det(D/f-A/c) power = 4 and det(D/f) - det(A/c)
3 equations: ((det(D)-det(G))2 - 2(det(D)+det(G))det(D+G) + det(D+G)2)2 + O(A) power = 12
4 equations: ????
N equations: (only solved for single variable case!).
N equations: V. complicated!!! Three Equations - Three Variables
1) [A]
2) [D-A]
3) (([D]-[G])2 - 2([D]+[G])[D-G] + [D-G])2 +....O(A)
not unfortunately:?[D+A+G][D+A-G][D-A+G][D+A-G] (area of triangle)
R = matrix (0,[D-G],[D-A]),([D-G],0,[G-A]),(...)
Warning:
y-(x-3)(x+4)=0
y-(x+2)(x-3)=0
y-(x+2)(x+4)=0
Resultant is 0 but has no triple root! using eliminate(..,[x,y]) in maxima.
NOTES
-x^2-y^2+xy+5>0, det(A)=3/4, c=5
-x^2-y^2-xy+5>0, det(D)=5/4, f=5
x^2+y^2-6>0, det(G) =1, i=-6
Each pair has a solution but the triple does NOT have a solution.
N Equations - Two variables
(1) xTAx+c ≥ 0
(2) xTDx+f ≥ 0
(3)....
???
N Equation - M variables
(1) xTAx+c ≥ 0
(2) xTDx+f ≥ 0
(3) xTGx+i ≥ 0
Solution iff:
????
det f(A,D,G,...c,f,i...)>0
To Prove Circles Kissing Number =6
(1a) x1^2+y1^2 -1 ≥ 0
(1b) -x1^2+-y1^2 +1 ≥ 0
(1.2) x1^2+x2^2-2x1.x2+y1^2+y2^2-2y1.y2 - 1 ≥ 0
12x12 matrices
A1a = (100000000000,010000000000,0000....) c=-1
A1b = (-100000000000,0-10000000000,0000....) c=1
A1.2 = (1-100000000000,-110000000000000,000....) c=-1
Roughly 13,000 numbers altogether! (Use sparse arrays)
N Equations - One variable (SOLVED!) ✓
(1) Ax2+C ≥ 0
(2) Dx2+F ≥ 0
(3) Gx2+I ≥ 0
has NO solution if (and only if) one pair does not have a solution or any single equation has no solution. (If all pairs have solution then all MUST have a solution). <-- This only works in one variable! (3) Gx2+I ≥ 0
One Equation - M variables ✓
(1) xTAx+c ≥ 0
Solution if:
A11<=0 & A22<=0 & det(A)(-1)M>=0 & c >= 0
or A11>0
or A22>0
or C>0
Two Equations - Two variables (✓)or C>0
(1) xTAx+c ≥ 0
(2) xTDx+f ≥ 0
Solution if:
One condition is (from the resultant):
det(cD-fA) ≥ 0
Two Equations - Three variables (✓?)
(1) xTAx+c ≥ 0
(2) xTDx+f ≥ 0
det(cD-fA) > 0
Two Equations - M variables (✓?)
(1) xTAx+c ≥ 0
(2) xTDx+f ≥ 0
Condition for overlapping det(cD-fA) > 0
Second equation one inside the other? Use area:
det(D/f) - det(A/c) > 0
-----------------------
Three Equations - 2 variables
(1) xTAx+c ≥ 0 . .... xTA'x+1 ≥ 0 , A'=A/c
(2) xTDx+f ≥ 0
(3) xTGx+i ≥ 0
???(εADG)+...????...
c4((εε(DG))(εε(DG))-(εεDD)(εεGG))2 + ...
+c2f2(...εε(DG)εε(DA)εε(AG)εε(GG)??...))))
+f4((εε(AG))(εε(AG))-(εεAA)(εεGG))2
+i4((εε(AD))(εε(AD))-(εεAA)(εεDD))2 > 0
(εεDG) = (det(D+G)-det(D)-det(G))/2
(εε(DG))(εε(DG))-(εεDD)(εεGG) = (2D+2G-V)(2D+2G-V)-4DG
= (det(D) + det(G) - det(D+G))^2 -4det(D)det(G)
= ((det(D)-det(G))2 - 2(det(D)+det(G))det(D+G) + det(D+G)2)2 + O(A)
... + det(D+A+G)2??? + ...
1 equation: det(A) power = 2
2 equations: det(D/f-A/c) power = 4 and det(D/f) - det(A/c)
3 equations: ((det(D)-det(G))2 - 2(det(D)+det(G))det(D+G) + det(D+G)2)2 + O(A) power = 12
4 equations: ????
N equations: (only solved for single variable case!).
N equations: V. complicated!!! Three Equations - Three Variables
1) [A]
2) [D-A]
3) (([D]-[G])2 - 2([D]+[G])[D-G] + [D-G])2 +....O(A)
not unfortunately:?[D+A+G][D+A-G][D-A+G][D+A-G] (area of triangle)
R = matrix (0,[D-G],[D-A]),([D-G],0,[G-A]),(...)
Warning:
y-(x-3)(x+4)=0
y-(x+2)(x-3)=0
y-(x+2)(x+4)=0
Resultant is 0 but has no triple root! using eliminate(..,[x,y]) in maxima.
NOTES
-x^2-y^2+xy+5>0, det(A)=3/4, c=5
-x^2-y^2-xy+5>0, det(D)=5/4, f=5
x^2+y^2-6>0, det(G) =1, i=-6
Each pair has a solution but the triple does NOT have a solution.
N Equations - Two variables
(1) xTAx+c ≥ 0
(2) xTDx+f ≥ 0
(3)....
???
N Equation - M variables
(1) xTAx+c ≥ 0
(2) xTDx+f ≥ 0
(3) xTGx+i ≥ 0
Solution iff:
????
det f(A,D,G,...c,f,i...)>0
To Prove Circles Kissing Number =6
(1a) x1^2+y1^2 -1 ≥ 0
(1b) -x1^2+-y1^2 +1 ≥ 0
(1.2) x1^2+x2^2-2x1.x2+y1^2+y2^2-2y1.y2 - 1 ≥ 0
12x12 matrices
A1a = (100000000000,010000000000,0000....) c=-1
A1b = (-100000000000,0-10000000000,0000....) c=1
A1.2 = (1-100000000000,-110000000000000,000....) c=-1
Roughly 13,000 numbers altogether! (Use sparse arrays)
Converting to a single equation.
We have:
Xn.Xn - 1 = 0
(Xn-Xm)2-1 = Snm2
So this can be converted into a quartic in N(N-1)/2+DN variables:
(Xn.Xn-1)2 + (|Xn-Xm|2-1-(Snm)2)2 = 0
For the case of N=5, 1025 variables. A general quartic in 1025 variables has A with 46,261,908,225 components. So the general formula is very long... unless expressed in a tensor notation then we can use tensor simplifications.
X= {1,Xn,Snm}
A=
{An|m, Bnn'|m}
{Bn|mm',Cnn'|mm'}
Comments
Post a Comment